22 research outputs found

    Ensuring a Reliable Operation of Two-Level IGBT-Based Power Converters:A Review of Monitoring and Fault-Tolerant Approaches

    Get PDF

    Cost-Effective Prognostics of IGBT Bond Wires With Consideration of Temperature Swing

    Get PDF

    A Model-Based Diagnosis System for a Traction Power Supply System

    No full text

    Wavelet Entropy-Based Traction Inverter Open Switch Fault Diagnosis in High-Speed Railways

    No full text
    In this paper, a diagnosis plan is proposed to settle the detection and isolation problem of open switch faults in high-speed railway traction system traction inverters. Five entropy forms are discussed and compared with the traditional fault detection methods, namely, discrete wavelet transform and discrete wavelet packet transform. The traditional fault detection methods cannot efficiently detect the open switch faults in traction inverters because of the low resolution or the sudden change of the current. The performances of Wavelet Packet Energy Shannon Entropy (WPESE), Wavelet Packet Energy Tsallis Entropy (WPETE) with different non-extensive parameters, Wavelet Packet Energy Shannon Entropy with a specific sub-band (WPESE3,6), Empirical Mode Decomposition Shannon Entropy (EMDESE), and Empirical Mode Decomposition Tsallis Entropy (EMDETE) with non-extensive parameters in detecting the open switch fault are evaluated by the evaluation parameter. Comparison experiments are carried out to select the best entropy form for the traction inverter open switch fault detection. In addition, the DC component is adopted to isolate the failure Isolated Gate Bipolar Transistor (IGBT). The simulation experiments show that the proposed plan can diagnose single and simultaneous open switch faults correctly and timely

    Traction Inverter Open Switch Fault Diagnosis Based on Choi–Williams Distribution Spectral Kurtosis and Wavelet-Packet Energy Shannon Entropy

    No full text
    In this paper, a new approach for fault detection and location of open switch faults in the closed-loop inverter fed vector controlled drives of Electric Multiple Units is proposed. Spectral kurtosis (SK) based on Choi–Williams distribution (CWD) as a statistical tool can effectively indicate the presence of transients and locations in the frequency domain. Wavelet-packet energy Shannon entropy (WPESE) is appropriate for the transient changes detection of complex non-linear and non-stationary signals. Based on the analyses of currents in normal and fault conditions, SK based on CWD and WPESE are combined with the DC component method. SK based on CWD and WPESE are used for the fault detection, and the DC component method is used for the fault localization. This approach can diagnose the specific locations of faulty Insulated Gate Bipolar Transistors (IGBTs) with high accuracy, and it requires no additional devices. Experiments on the RT-LAB platform are carried out and the experimental results verify the feasibility and effectiveness of the diagnosis method

    Operation Control Method for High-Speed Maglev Based on Fractional-Order Sliding Mode Adaptive and Diagonal Recurrent Neural Network

    No full text
    The speed profile tracking calculation of high-speed maglev trains is mainly affected by running resistance. In order to reduce the adverse effects and improve tracking accuracy, this paper presents a maglev train operation control method based on a fractional-order sliding mode adaptive and diagonal recurrent neural network (FSMA-DRNN). First, the kinematic resistance equation is established due to the three types of resistance that occur during the actual operation of a train: air resistance, guide eddy current resistance, and suspension frame generator coil resistance. Then, the FSMA-DRNN control law and parameter update law are designed, and a FSMA-DRNN operation controller is composed of three parts: speed feed forward, fractional-order sliding mode adaptive equivalent control, and diagonal recurrent neural network resistance compensation. Furthermore, by using the designed operation controller, it is proven effective by the Lyapunov theory for the stability of the closed-loop control system. Apart from the proposed theoretical analysis, the proposed approaches are verified by experiments on the high-speed maglev hardware-in-the-loop simulation platform Rt-Lab, in line with the 29.86 km test line and a five-car train from the Shanghai maglev, showing the effectiveness and superiority for operation optimization
    corecore